22 research outputs found

    Cloud geometry for passive remote sensing

    Get PDF
    An important cause for disagreements between current climate models is lack of understanding of cloud processes. In order to test and improve the assumptions of such models, detailed and large scale observations of clouds are necessary. Passive remote sensing methods are well-established to obtain cloud properties over a large observation area in a short period of time. In case of the visible to near infrared part of the electromagnetic spectrum, a quick measurement process is achieved by using the sun as high-intensity light source to illuminate a cloud scene and by taking simultaneous measurements on all pixels of an imaging sensor. As the sun as light source can not be controlled, it is not possible to measure the time light travels from source to cloud to sensor, which is how active remote sensing determines distance information. But active light sources do not provide enough radiant energy to illuminate a large scene, which would be required to observe it in an instance. Thus passive imaging remains an important remote sensing method. Distance information and accordingly cloud surface location information is nonetheless crucial information: cloud fraction and cloud optical thickness largely determines the cloud radiative effect and cloud height primarily influences a cloud's influence on the Earth's thermal radiation budget. In combination with ever increasing spatial resolution of passive remote sensing methods, accurate cloud surface location information becomes more important, as the largest source of retrieval uncertainties at this spatial scale, influences of 3D radiative transfer effects, can be reduced using this information. This work shows how the missing location information is derived from passive remote sensing. Using all sensors of the improved hyperspectral and polarization resolving imaging system specMACS, a unified dataset, including classical hyperspectral measurements as well as cloud surface location information and derived properties, is created. This thesis shows how RGB cameras are used to accurately derive cloud surface geometry using stereo techniques, complementing the passive remote sensing of cloud microphysics on board the German High-Altitude Long-Range research aircraft (HALO). Measured surface locations are processed into a connected surface representation, which in turn is used to assign height and location to other passive remote sensing observations. Furthermore, cloud surface orientation and a geometric shadow mask are derived, supplementing microphysical retrieval methods. The final system is able to accurately map visible cloud surfaces while flying above cloud fields. The impact of the new geometry information on microphysical retrieval uncertainty is studied using theoretical radiative transfer simulations and measurements. It is found that in some cases, information about surface orientation allows to improve classical cloud microphysical retrieval methods. Furthermore, surface information helps to identify measurement regions where a good microphysical retrieval quality is expected. By excluding likely biased regions, the overall microphysical retrieval uncertainty can be reduced. Additionally, using the same instrument payload and based on knowledge of the 3D cloud surface, new approaches for the retrieval of cloud droplet radius exploiting measurements of parts of the polarized angular scattering phase function become possible. The necessary setup and improvements of the hyperspectral and polarization resolving measurement system specMACS, which have been developed throughout four airborne field campaigns using the HALO research aircraft are introduced in this thesis.Ein wichtiger Grund für Unterschiede zwischen aktuellen Klimamodellen sind nicht ausreichend verstandene Wolkenprozesse. Um die zugrundeliegenden Annahmen dieser Modelle zu testen und zu verbessern ist es notwendig detaillierte und großskalige Beobachtungen von Wolken durch zu führen. Methoden der passiven Fernerkundung haben sich für die schnelle Erfassung von Wolkeneigenschaften in einem großen Beobachtungsgebiet etabliert. Für den sichtbaren bis nahinfraroten Bereich des elektromagnetischen Spektrums kann eine schnelle Messung erreicht werden, in dem die Sonne als starke Lichtquelle genutzt wird und die Wolkenszene durch simultane Messung über alle Pixel eines Bildsensors erfasst wird. Da die Sonne als Lichtquelle nicht gesteuert werden kann, ist es nicht möglich die Zeit zu messen die von einem Lichtstrahl für den Weg von der Quelle zur Wolke und zum Sensor benötigt wird, so wie es bei aktiven Verfahren zur Distanzbestimmung üblich ist. Allerdings können aktive Lichtquellen nicht genügend Energie bereitstellen um eine große Szene gut genug zu beleuchten um diese Szene in einem kurzen Augenblick vollständig zu erfassen. Aus diesem Grund werden passive bildgebende Verfahren weiterhin eine wichtige Methode zur Fernerkundung bleiben. Trotzdem ist der Abstand zur beobachteten Wolke und damit der Ort der Wolke eine entscheidende Information: Wolkenbedeckungsgrad und die optische Dicke einer Wolke bestimmen einen Großteil des Strahlungseffektes von Wolken und die Höhe der Wolken ist der Haupteinflussfaktor von Wolken auf die thermische Strahlungsbilanz der Erde. Einhergehend mit der weiterhin zunehmenden Auflösung von passiven Fernerkundungsmethoden werden genaue Informationen über den Ort von Wolkenoberflächen immer wichtiger. Dreidimensionale Strahlungstransporteffekte werden auf kleineren räumlichen Skalen zum dominierenden Faktor für Fehler in Messverfahren für Wolkenmikrophysik. Dieser Einfluss auf die Messverfahren kann durch die Nutzung von Informationen über die Lage der Wolken reduziert und die Ergebnisse somit verbessert werden. Diese Arbeit zeigt, wie die fehlenden Ortsinformationen aus passiven Fernerkundungsmethoden gewonnen werden können. Damit kann ein vereinheitlichter Datensatz aller Sensoren des verbesserten specMACS-Systems für hyperspektrale und polarisationsaufgelöste Bilderfassung erstellt werden, in dem außer den gemessenen Strahlungsdichten auch die Positionen der beobachteten Wolkenoberflächen und daraus abgeleitete Größen enthalten sind. In dieser Arbeit wird gezeigt, wie RGB-Kameras genutzt werden, um mit Hilfe stereographischer Techniken die Geometrie der beobachteten Wolken ab zu leiten und so die Möglichkeiten zur passiven Fernerkundung auf dem Forschungsflugzeug HALO zu erweitern. Aus den so gemessenen Positionen der Wolkenoberflächen wird eine geschlossene Darstellung der Wolkenoberflächen berechnet. Dies ermöglicht es die Daten aus anderen passiven Fernerkundungsmethoden um Höhe und Ort der Messung zu erweitern. Außerdem ist es so möglich die Orientierung der Wolkenoberflächen und eine Schattenmaske auf Grund der nun bekannten Beobachtungsgeometrie zu berechnen. Das fertige System ist in der Lage, die sichtbaren Wolkenoberflächen aus Daten von einem Überflug zu rekonstruieren. Mit Hilfe theoretischer Strahlungstransportsimulationen und Messungen wird der Einfluss der neu gewonnenen Informationen auf bestehende Rekonstruktionsmethoden für Wolkenmikrophysik untersucht. In manchen Fällen helfen die neu gewonnenen Informationen direkt die Ergebnisse dieser Methoden zu verbessern und in jedem Fall ermöglichen es die Positionsdaten Bereiche zu identifizieren für die bekannt ist, dass bisherige Rekonstruktionsmethoden nicht funktionieren. Durch Ausschluss solcher Bereiche wird der Gesamtfehler von Mirkophysikrekonstruktionen weiterhin reduziert. Das aktuelle specMACS System ermöglicht auch polarisationsaufgelöste Messungen, wodurch eine sehr genaue Bestimmung der Wolkentropfengrößen möglich wird. Die nun verfügbaren Positionsdaten der Wolkenoberflächen helfen die Genauigkeit dieses Verfahrens deutlich zu verbessern. Die notwendigen Auf- und Umbauten des hyperspektralen und polarisationsauflösenden Messsystems specMACS, die während vier Flugzeuggestützer Messkampagnen auf dem Forschungsflugzeug HALO entwickelt wurden sind in dieser Arbeit beschrieben

    Cloud geometry for passive remote sensing

    Get PDF
    An important cause for disagreements between current climate models is lack of understanding of cloud processes. In order to test and improve the assumptions of such models, detailed and large scale observations of clouds are necessary. Passive remote sensing methods are well-established to obtain cloud properties over a large observation area in a short period of time. In case of the visible to near infrared part of the electromagnetic spectrum, a quick measurement process is achieved by using the sun as high-intensity light source to illuminate a cloud scene and by taking simultaneous measurements on all pixels of an imaging sensor. As the sun as light source can not be controlled, it is not possible to measure the time light travels from source to cloud to sensor, which is how active remote sensing determines distance information. But active light sources do not provide enough radiant energy to illuminate a large scene, which would be required to observe it in an instance. Thus passive imaging remains an important remote sensing method. Distance information and accordingly cloud surface location information is nonetheless crucial information: cloud fraction and cloud optical thickness largely determines the cloud radiative effect and cloud height primarily influences a cloud's influence on the Earth's thermal radiation budget. In combination with ever increasing spatial resolution of passive remote sensing methods, accurate cloud surface location information becomes more important, as the largest source of retrieval uncertainties at this spatial scale, influences of 3D radiative transfer effects, can be reduced using this information. This work shows how the missing location information is derived from passive remote sensing. Using all sensors of the improved hyperspectral and polarization resolving imaging system specMACS, a unified dataset, including classical hyperspectral measurements as well as cloud surface location information and derived properties, is created. This thesis shows how RGB cameras are used to accurately derive cloud surface geometry using stereo techniques, complementing the passive remote sensing of cloud microphysics on board the German High-Altitude Long-Range research aircraft (HALO). Measured surface locations are processed into a connected surface representation, which in turn is used to assign height and location to other passive remote sensing observations. Furthermore, cloud surface orientation and a geometric shadow mask are derived, supplementing microphysical retrieval methods. The final system is able to accurately map visible cloud surfaces while flying above cloud fields. The impact of the new geometry information on microphysical retrieval uncertainty is studied using theoretical radiative transfer simulations and measurements. It is found that in some cases, information about surface orientation allows to improve classical cloud microphysical retrieval methods. Furthermore, surface information helps to identify measurement regions where a good microphysical retrieval quality is expected. By excluding likely biased regions, the overall microphysical retrieval uncertainty can be reduced. Additionally, using the same instrument payload and based on knowledge of the 3D cloud surface, new approaches for the retrieval of cloud droplet radius exploiting measurements of parts of the polarized angular scattering phase function become possible. The necessary setup and improvements of the hyperspectral and polarization resolving measurement system specMACS, which have been developed throughout four airborne field campaigns using the HALO research aircraft are introduced in this thesis.Ein wichtiger Grund für Unterschiede zwischen aktuellen Klimamodellen sind nicht ausreichend verstandene Wolkenprozesse. Um die zugrundeliegenden Annahmen dieser Modelle zu testen und zu verbessern ist es notwendig detaillierte und großskalige Beobachtungen von Wolken durch zu führen. Methoden der passiven Fernerkundung haben sich für die schnelle Erfassung von Wolkeneigenschaften in einem großen Beobachtungsgebiet etabliert. Für den sichtbaren bis nahinfraroten Bereich des elektromagnetischen Spektrums kann eine schnelle Messung erreicht werden, in dem die Sonne als starke Lichtquelle genutzt wird und die Wolkenszene durch simultane Messung über alle Pixel eines Bildsensors erfasst wird. Da die Sonne als Lichtquelle nicht gesteuert werden kann, ist es nicht möglich die Zeit zu messen die von einem Lichtstrahl für den Weg von der Quelle zur Wolke und zum Sensor benötigt wird, so wie es bei aktiven Verfahren zur Distanzbestimmung üblich ist. Allerdings können aktive Lichtquellen nicht genügend Energie bereitstellen um eine große Szene gut genug zu beleuchten um diese Szene in einem kurzen Augenblick vollständig zu erfassen. Aus diesem Grund werden passive bildgebende Verfahren weiterhin eine wichtige Methode zur Fernerkundung bleiben. Trotzdem ist der Abstand zur beobachteten Wolke und damit der Ort der Wolke eine entscheidende Information: Wolkenbedeckungsgrad und die optische Dicke einer Wolke bestimmen einen Großteil des Strahlungseffektes von Wolken und die Höhe der Wolken ist der Haupteinflussfaktor von Wolken auf die thermische Strahlungsbilanz der Erde. Einhergehend mit der weiterhin zunehmenden Auflösung von passiven Fernerkundungsmethoden werden genaue Informationen über den Ort von Wolkenoberflächen immer wichtiger. Dreidimensionale Strahlungstransporteffekte werden auf kleineren räumlichen Skalen zum dominierenden Faktor für Fehler in Messverfahren für Wolkenmikrophysik. Dieser Einfluss auf die Messverfahren kann durch die Nutzung von Informationen über die Lage der Wolken reduziert und die Ergebnisse somit verbessert werden. Diese Arbeit zeigt, wie die fehlenden Ortsinformationen aus passiven Fernerkundungsmethoden gewonnen werden können. Damit kann ein vereinheitlichter Datensatz aller Sensoren des verbesserten specMACS-Systems für hyperspektrale und polarisationsaufgelöste Bilderfassung erstellt werden, in dem außer den gemessenen Strahlungsdichten auch die Positionen der beobachteten Wolkenoberflächen und daraus abgeleitete Größen enthalten sind. In dieser Arbeit wird gezeigt, wie RGB-Kameras genutzt werden, um mit Hilfe stereographischer Techniken die Geometrie der beobachteten Wolken ab zu leiten und so die Möglichkeiten zur passiven Fernerkundung auf dem Forschungsflugzeug HALO zu erweitern. Aus den so gemessenen Positionen der Wolkenoberflächen wird eine geschlossene Darstellung der Wolkenoberflächen berechnet. Dies ermöglicht es die Daten aus anderen passiven Fernerkundungsmethoden um Höhe und Ort der Messung zu erweitern. Außerdem ist es so möglich die Orientierung der Wolkenoberflächen und eine Schattenmaske auf Grund der nun bekannten Beobachtungsgeometrie zu berechnen. Das fertige System ist in der Lage, die sichtbaren Wolkenoberflächen aus Daten von einem Überflug zu rekonstruieren. Mit Hilfe theoretischer Strahlungstransportsimulationen und Messungen wird der Einfluss der neu gewonnenen Informationen auf bestehende Rekonstruktionsmethoden für Wolkenmikrophysik untersucht. In manchen Fällen helfen die neu gewonnenen Informationen direkt die Ergebnisse dieser Methoden zu verbessern und in jedem Fall ermöglichen es die Positionsdaten Bereiche zu identifizieren für die bekannt ist, dass bisherige Rekonstruktionsmethoden nicht funktionieren. Durch Ausschluss solcher Bereiche wird der Gesamtfehler von Mirkophysikrekonstruktionen weiterhin reduziert. Das aktuelle specMACS System ermöglicht auch polarisationsaufgelöste Messungen, wodurch eine sehr genaue Bestimmung der Wolkentropfengrößen möglich wird. Die nun verfügbaren Positionsdaten der Wolkenoberflächen helfen die Genauigkeit dieses Verfahrens deutlich zu verbessern. Die notwendigen Auf- und Umbauten des hyperspektralen und polarisationsauflösenden Messsystems specMACS, die während vier Flugzeuggestützer Messkampagnen auf dem Forschungsflugzeug HALO entwickelt wurden sind in dieser Arbeit beschrieben

    Earth Virtualization Engines -- A Technical Perspective

    Full text link
    Participants of the Berlin Summit on Earth Virtualization Engines (EVEs) discussed ideas and concepts to improve our ability to cope with climate change. EVEs aim to provide interactive and accessible climate simulations and data for a wide range of users. They combine high-resolution physics-based models with machine learning techniques to improve the fidelity, efficiency, and interpretability of climate projections. At their core, EVEs offer a federated data layer that enables simple and fast access to exabyte-sized climate data through simple interfaces. In this article, we summarize the technical challenges and opportunities for developing EVEs, and argue that they are essential for addressing the consequences of climate change

    The North Atlantic Waveguide and Downstream Impact Experiment

    Get PDF
    The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) explored the impact of diabatic processes on disturbances of the jet stream and their influence on downstream high-impact weather through the deployment of four research aircraft, each with a sophisticated set of remote sensing and in situ instruments, and coordinated with a suite of ground-based measurements. A total of 49 research flights were performed, including, for the first time, coordinated flights of the four aircraft: the German High Altitude and Long Range Research Aircraft (HALO), the Deutsches Zentrum für Luft- und Raumfahrt (DLR) Dassault Falcon 20, the French Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE) Falcon 20, and the British Facility for Airborne Atmospheric Measurements (FAAM) BAe 146. The observation period from 17 September to 22 October 2016 with frequently occurring extratropical and tropical cyclones was ideal for investigating midlatitude weather over the North Atlantic. NAWDEX featured three sequences of upstream triggers of waveguide disturbances, as well as their dynamic interaction with the jet stream, subsequent development, and eventual downstream weather impact on Europe. Examples are presented to highlight the wealth of phenomena that were sampled, the comprehensive coverage, and the multifaceted nature of the measurements. This unique dataset forms the basis for future case studies and detailed evaluations of weather and climate predictions to improve our understanding of diabatic influences on Rossby waves and the downstream impacts of weather systems affecting Europe

    Vertical distribution of the particle phase in tropical deep convective clouds as derived from cloud-side reflected solar radiation measurements

    Get PDF
    Vertical profiles of cloud particle phase in tropical deep convective clouds (DCCs) were investigated using airborne solar spectral radiation data collected by the German High Altitude and Long Range Research Aircraft (HALO) during the ACRIDICON-CHUVA campaign, which was conducted over the Brazilian rainforest in September 2014. A phase discrimination retrieval based on imaging spectroradiometer measurements of DCC side spectral reflectivity was applied to clouds formed in different aerosol conditions. From the retrieval results the height of the mixedphase layer of the DCCs was determined. The retrieved profiles were compared with in situ measurements and satellite observations. It was found that the depth and vertical position of the mixed-phase layer can vary up to 900m for one single cloud scene. This variability is attributed to the different stages of cloud development in a scene. Clouds of mature or decaying stage are affected by falling ice particles resulting in lower levels of fully glaciated cloud layers compared to growing clouds. Comparing polluted and moderate aerosol conditions revealed a shift of the lower boundary of the mixed-phase layer from 5.6 +/- 0.2 km (269 K;moderate) to 6.2 +/- 0.3 km (267 K;polluted), and of the upper boundary from 6.8 +/- 0.2 km (263 K;moderate) to 7.4 +/- 0.4 km (259 K;polluted), as would be expected from theory

    Earth Virtualization Engines: a technical perspective

    Get PDF
    Participants of the Berlin Summit on Earth Virtualization Engines (EVEs) discussed ideas and concepts to improve our ability to cope with climate change. EVEs aim to provide interactive and accessible climate simulations and data for a wide range of users. They combine high-resolution physics-based models with machine learning techniques to improve the fidelity, efficiency, and interpretability of climate projections. At their core, EVEs offer a federated data layer that enables simple and fast access to exabyte-sized climate data through simple interfaces. In this article, we summarize the technical challenges and opportunities for developing EVEs, and argue that they are essential for addressing the consequences of climate change

    Characterization, calibration and operation of a hyperspectral sky imager

    No full text
    The thesis describes the development of a highly automated hyperspectral radiance measurement device and all the needed steps to go from measuring the environment until high quality data in reasonable units is available. Characterization and calibration following standard procedures is included but also important new refinements including correction of sensor nonlinearity which considerably improve the data quality and reliability have been added. As far as possible, all potential sources of measurement errors and system failures are identified and reasonable countermeasures have been implemented. Additionally, the foundation for a fast approximative analytic sky model for forward and inverse calculation of clear sky radiance has been developed and compared with measurement data

    Control of Ste6 Recycling by Ubiquitination in the Early Endocytic Pathway in Yeast

    No full text
    We present evidence that ubiquitination controls sorting of the ABC-transporter Ste6 in the early endocytic pathway. The intracellular distribution of Ste6 variants with reduced ubiquitination was examined. In contrast to wild-type Ste6, which was mainly localized to internal structures, these variants accumulated at the cell surface in a polar manner. When endocytic recycling was blocked by Ypt6 inactivation, the ubiquitination deficient variants were trapped inside the cell. This indicates that the polar distribution is maintained dynamically through endocytic recycling and localized exocytosis (“kinetic polarization”). Ste6 does not appear to recycle through late endosomes, because recycling was not blocked in class E vps (vacuolar protein sorting) mutants (Δvps4, Δvps27), which are affected in late endosome function and in the retromer mutant Δvps35. Instead, recycling was partially affected in the sorting nexin mutant Δsnx4, which serves as an indication that Ste6 recycles through early endosomes. Enhanced recycling of wild-type Ste6 was observed in class D vps mutants (Δpep12, Δvps8, and Δvps21). The identification of putative recycling signals in Ste6 suggests that recycling is a signal-mediated process. Endocytic recycling and localized exocytosis could be important for Ste6 polarization during the mating process

    Ice crystal characterization in cirrus clouds II: radiometric characterization of HaloCam for the quantitative analysis of halo displays

    Get PDF
    We present a procedure for geometric, spectral, and absolute radiometric characterization of the weather-proof RGB camera HaloCamRAW and demonstrate its application in a case study. This characterization procedure can be generalized to other RGB camera systems with similar field of view. HaloCamRAW is part of the automated halo observation system HaloCam and designed for the quantitative analysis of halo displays. The geometric calibration was performed using a chessboard pattern to estimate camera matrix and distortion coefficients. For the radiometric characterization of HaloCamRAW, the dark signal and vignetting effect were determined to correct the measured signal. Furthermore, the spectral response of the RGB sensor and the linearity of its radiometric response were characterized. The absolute radiometric response was estimated by cross calibrating HaloCamRAW against the completely characterized spectrometer of the Munich Aerosol Cloud Scanner (specMACS). For a typical measurement signal the relative (absolute) radiometric uncertainty amounts to 2.8 % (5.0 %), 2.4 % (5.8 %), and 3.3 % (11.8 %) for the red, green, and blue channel, respectively. The absolute radiometric uncertainty estimate is larger mainly due to the inhomogeneity of the scene used for cross calibration and the absolute radiometric uncertainty of specMACS. Geometric and radiometric characterization of HaloCamRAW were applied to a scene with a 22° halo observed on 21 April 2016. The observed radiance distribution and 22° halo ratio compared well with radiative transfer simulations assuming a range of ice crystal habits and surface roughness values. This application demonstrates the potential of developing a retrieval method for ice crystal properties, such as ice crystal size, shape, and surface roughness using calibrated HaloCamRAW observations together with radiative transfer simulations
    corecore